
ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 1, January 2013

Copyright to IJARCCE www.ijarcce.com 950

A Survey on Emerging trends in Requirement engineering for a

Software development Life cycle
Swarnalatha K. S

 1
, Dr G N Srinivasan

2

 Department of Computer Science and Engineering, R.V College of Engineering, Bangalore, Karnataka, India
 1

 Department of Information Science and Engineering, R.V College of Engineering, Bangalore, Karnataka, India
2

ABSTRACT: Requirement Engineering is an important phase of any software development. This paper reviews the

area of requirements engineering. It outlines the key concerns to which attention should be devoted by both

practitioners, who wish to "reengineer" their development processes, and academics, seeking intellectual challenges.

It presents an assessment of the state-of-the-art and draws conclusions in the form of a research agenda.

Keywords: Requirement Engineering, SDLC, Value Modelling, Gathering, Orientation

I. INTRODUCTION

The purpose of this paper is to give a review of

requirements engineering and to present a research

agenda based on this review. The review is not intended

to be comprehensive, on the contrary it is based on a

particular framework and categorization of the principal

issues and it relies on a personal assessment of the

contributions in each of the key areas. In particular,

papers are cited as illustrative examples of work and not

as a survey of the literature. "Requirements engineering

is the branch of systems engineering concerned with the

real-world goals for, services provided by, and

constraints on a large and complex software-intensive

system. It is also concerned with the relationship of these

factors to precise specifications of system behaviour, and

to their evolution over time and across system families

[1]" .Put crudely requirements engineering focuses o n

improvements to the front-end of the system

development life-cycle. Establishing the needs that have

given rise to the development process and organizing this

information in a form that will support system

conception and implementation. You are asked to note

the broad systems engineering remit of requirements

engineering.

It is probably unnecessary to set down an extensive

motivation for research in requirements engineering. In

the final analysis the quality of a system is determined by

the extent to which it meets the requirements of the

stakeholders [2]. The most direct route to improving

system quality, therefore to ensure that requirements are

accurately determined and that a requirements focus is

maintained through the development process. The

positive view of the importance of requirements

engineering to the

predominant negative view, which is as follows.

Whenever practitioners are questioned about difficulties

in system development they stress inadequate

requirements engineering as a major cause of problems.

Errors or misconceptions identified early in the

development process are relatively cheap to eliminate

[2]. As development precedes the cost of error removal

escalates rapidly until the system is in the field at which

point it is generally prohibitively expensive to correct

any errors. Further, as development proceeds errors are

more difficult to localize as they spread across

components of the system [2].

The paper is divided into seven areas and into key

concerns within each of these areas. The areas reflect the

basic structure of the requirements engineering process,

they are: the context in which the requirements

engineering process takes place; the groundwork

necessary for requirements engineering; the acquisition

of the "raw" requirements; rendering these requirements

useable through modelling and specification; analysis of

the requirements; measurement t o control the

requirements and systems engineering process;

communication and documentation of the results of

requirements engineering.

II. CONTEXTS

Precondition for effective requirement engineering

Orientation: Before devoting increased effort and

resources to requirements engineering it is essential for

certain preconditions to be satisfied otherwise it will be

dissipated by a generally disorganized development

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 1, January 2013

Copyright to IJARCCE www.ijarcce.com 951

process. In other words it is important that developers do

not run before they can walk! Because organizational

distance can dim the "voice of the customer"[3] in the

subsequent development process, requirements

engineering effort is particularly susceptible to wastage.

It should be immediately clear that a defined and

documented development process and rigorous project

management of costs, schedule & changes are
prerequisites for effective requirements engineering.

Without these there is no ability to make informed

commitments in the neither development process nor

channel for the information produced by requirements

engineering.

Assessment: This area has been brought to general

attention in the literature on software process maturity.

Perhaps the most important research lesson that this area

of work has taught us is that improvements in software

development are interlocking. The results of associated

studies have firmly indicated to the research community

that many of its concerns are beyond the immediate

capabilities of industry and that it needs to clearly

identify the priorities associated with different

improvements and their supporting preconditions [4].

Requirements engineering research has been no better

than any other area of software and systems engineering

in this regard.

Issue: Much of the work in requirements engineering has

been built on the tacit assumption that it is situated in a

standard "waterfall" process of system development. In

this case there is a clear mechanism for feeding the

products of the requirements engineering process through

to design and obvious management breakpoints for

measurement and control. We have an intuitive

understanding of the preconditions for requirements

engineering and how t o establish them. In

"unconventional" processes such as incremental

development there is less clarity on the interface between

requirements engineering and the overall system

development process and how to maintain the link

between a design and the emerging requirements. Further

work is necessary in this area.

Organizational setting

Requirements engineering can take place in many

organizational settings. The development process may

be: internal to an organization, where the system is being

produced by that organization for its own use; bespoke,

where a client requests another organization to produce a

system specific to its requirements; customization in

which some generic product or framework is tailored to

meet a set of requirements set down by an external client;

cooperative in which knowledge of the application, the

requirements, and the eventual use of the system is

distributed among different organization develops a

product to be placed in a perceived market. Each of these

settings confers slightly different responsibilities and in

each case suggests different technical priorities. The

issue of organizational context and its ramifications for

the organization of system development has, been

neglected in software engineering. The information

systems community has, by contrast, recognized this

issue [7] and has attempted to make the assumptions

about organizational context, on which methods and

techniques depend, explicit. Broadly the dominant view

from within software engineering has been fixed on

bespoke development. This is largely because this type

of development is characteristic of the defence

organizations and contractors who have been most

articulate about their difficulties and who have funded

software engineering research. There is a growing

recognition of the importance of system customization

and extension cynics might suggest that this reflects the

tougher stance of defence procurement agencies. There is

virtually no work o n the support for developing products

for markets though this concern is surfacing within

general debate, in particular through large

telecommunications organizations who, since

deregulation, now deliver services into a global

competitive marketplace.

Contract and procurement procedures
In many organizational settings the requirements

engineering process is framed by contractual and

procurement issues. Statements of requirements assume a

different force when embedded in a legally binding

contract. The ability to question or pose alternatives to

certain requirements may be blocked by the procurement

procedures of which system development is only a part.

Unless attention is paid to the subtle interactions between

contract, procurement and requirements engineering

relatively trivial issues can severely distort the

development of the system. Most introductory texts on

software and system development make mention of the

concept of the specification as contract. The contract

metaphor has been extensively exploited in the study of

specification and of tool support. Generally however,

contractual and procurement matters are regarded as

organizationally specific or otherwise out of the scope of

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 1, January 2013

Copyright to IJARCCE www.ijarcce.com 952

requirements engineering. Requirements engineering

does not take place in a vacuum. Let us take as an

example a typical competitive tender. Both the tender

document and the bids that respond to it contain products

of requirements engineering. These may be colored by

the commercial context and the risks of giving advantage

to competitors also engaged in the process. Linked to this

is the difficult matter of how t o demonstrate the capacity

to respond to a set of customer needs without actually

doing the design. These are real and significant concerns

which should be addressed by research.

III. GROUNDWORK

Bounding

The first step in a requirements engineering exercise is to

establish the scope and delineate the bounds of the

requirements and design space. To set out the broad area

of concern and to distinguish it from those aspects of the

world which are not of concern or, viewed the other way,

to define the space in which as engineers we are free to

act. If the bounds are set too narrowly we may be

constrained to miss an opportunity to respond to an

underlying need. If the bounds are set to widely we may

waste time or act outside our competence or authority.

Bounding errors are characteristic of novice systems

engineers. The issue of bounding is one of the thorniest

in requirements engineering. There have been very few

attempts to tackle it head on [9]. It appears relatively

straightforward in any given case to draw bounds but to

give general guidance o n how to make bounding

decisions is very difficult. Further foundational and

conceptual work is required in this area. Interesting

possibilities include the use of design experience to

inform bounding decisions.

 Feasibility and risk

It is quite clear that there are certain requirements which

it is infeasible to respond to. Typically these are cases

where the costs of establishing the requirements exceeds

the benefits gained in satisfying the needs which

underpin them; or, where satisfying the requirements

would be, prima facie, illegal, unethical or contrary to the

laws of science. It is common sense that feasibility

should be determined as early as possible. Alongside this

it is important to identify the primary risks to which the

system development process is exposed. This involves a

basic assessment of the consequences of errors or failures

in each part of the development process. Once this has

been done it is possible to make a sensible allocation of

effort across all aspects of development. Feasibility

studies, a feature of almost all industrial system

development processes have been largely ignored in the

research literature. The exception being where such

studies are linked to the development of prototypes. The

area of risk as it relates to system development is

attracting attention and there have been some significant

contributions to this literature Establishing feasibility is

linked to the same problems of "premature design" as

bounding, discussed above. Obviously our ability to

establish feasibility and risk can be improved by analysis

of previous projects, particularly post-mortem analysis of

system failures. Methods for carrying out such analyses

and for recording and deploying the resulting knowledge

are of interest [11].

IV. ACQUISITIONS

STAKEHOLDER ANALYSIS

The process of stakeholder analysis involves identifying

those individuals or roles that should have a voice in the

requirements engineering process. These may be clients,

users and other beneficiaries, they may also be people

involved in subsequent design, implementation,

maintenance of the system. Stakeholder analysis involves

understanding their responsibilities, capacities and the

organizational relations between them. This analysis

serves as a map for subsequent information gathering and

a means of interpreting the information provided and its

status. There are two threads making up current work o n

stakeholder analysis. The first thread arises out of work o

n viewpoint-based methods in which viewpoints are tied

to client authorities responsible for information provided

within those viewpoints. The second thread arises from

work on enterprise modelling in which identifying

stakeholders is part of the process of modelling the

organizational environment in which the system is to be

placed. The work in this area needs to be brought

together. From the method thread - organized guidance

to assist in identifying stakeholders; from the enterprise

modelling thread - modelling schemes for capturing the

products of analysis. Means for reasoning about, and

drawing consequences from, stakeholder analysis can be

built on this.

Participation

Requirements engineering is a group process involving

cooperation. An important part of the requirements

engineering task is facilitating collaborative work,

consensus building and negotiation between

stakeholders. There has been a significant body of work

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 1, January 2013

Copyright to IJARCCE www.ijarcce.com 953

o n participation and cooperation in requirements

engineering. The most significant of this is the work on

participative, joint or facilitated systems development.

This work is related to, but distinct from, work on the

application of "groupware" to requirements engineering

The shortcomings, and hence the research issues, in this

area are mostly common to the study of cooperative

work in general. There is not much solid empirical work

and what there is, is too narrow to form a basis for

effective support, either by tools or methods. The

underlying models of cooperation are too impoverished t

o have real application in a complex task such as

requirements engineering.

 Information gathering

 Probably the most difficult task in requirements

engineering is information gathering - that is gathering

information on the needs and the "domain" or

"environment" in which these needs are situated. This

information may be set down in large documents, may be

held by identifiable experts, and may be buried in the

work practices of individual users, and so on. For the

most part the techniques available in this area have been

borrowed from related fields. Requirements engineering

has yet to evolve a distinct set of techniques of its own.

The use of structured interviews and questionnaires is

frequently cited but little analysed. Similarly text and

document analysis. Techniques such as repertory grids

have been drawn from area of knowledge acquisition. An

interesting emergent area is the use of ethnographic and

associated "observational" methods. It is already evident

that any realistic domain requires a judicious selection

and combination of techniques. How t o make such a

selection and combination is however far from clear.

There is clearly significant scope for further work in this

area.

V. MODELLING

Value modelling

Decisions and tradeoffs required during design must be

built on a systematic appreciation of those attributes

(loosely, qualities) which are valued in a system which

responds to the originating needs. This means building a

model, independent of any subsequent implementation

decisions, that document and relates these values. It is

unsurprising, given that the literature o n software

engineering does not recognize decision between

alternatives and tradeoffs at any level above choice of

algorithm, that it does not take a value-based view of

requirements. Some relevant analysis can however be

found in the ideas of multi-perspective development. The

application of multi-criteria decision making techniques

in software development as a whole is an interesting

open area. Techniques such as QFD which have been

extensively applied to manufacturing development may

be transferable.

Modelling goals and required services

The core of requirements engineering, and the primary

means by which the needs are rendered in a form that

can be used to realize them, is the identification of the

goals that a projected system is required to satisfy and

the services that it should supply. The goals may, of

course have interdependencies or conflicts which must

be modelled and where appropriate resolved. In certain

circumstances, goals may be interpreted as service

provision; however, in identifying these it is necessary to

identify the "external" actions the system should perform

without constraining precisely how they should be

performed. . The approaches all provide means of

modelling goals and reasoning about the relations

between those goals. They are weak on techniques for

actually identifying those goals. If the approaches

developed in this area are to be taken up in

practice they need to be properly tested in large case

studies. Some merging of related methods would be

beneficial. The approaches may also have to be shorn of

representation schemes which, while important to their

development hinder further exploitation.

Task analysis

Most systems interact with humans. It is essential

therefore to identify these people and understand the

tasks that they perform using the system. This model can

be used to predict the problems they might encounter and

t o suggest ways in which the interface to the system can

be organized to have a better fit with their tasks and the

way in which they understand the system and its

properties. In some sense much of the work carried on

under the heading of task analysis mirrors other

modelling carried out in requirements engineering. The

difference is in the modelling focus and in the type of

analysis to which these models are subject (to determine

user based notions of consistency, complexity, and so

on). Task analysis has largely been of concern to the user

interface design community and the techniques which

have arisen from it have, with some notable exceptions,

not been treated as part of a larger systems engineering

process. Work on method integration is required and may

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 1, January 2013

Copyright to IJARCCE www.ijarcce.com 954

yield substantial economies as information collected in

task models is obtainable elsewhere in the requirements

engineering process. Further work o n identifying

relevant aspects of human task performance that can be

derived from task models is also required [10].

Reus e

It might be thought from the discussion above that

requirements engineering is always done de novo. This

is, of course far from the case. There is scope for reusing

both the products and process of requirements

engineering from previous exercises and for organizing

the process of requirements engineering so as to enhance

the opportunities for subsequent reuse. Obviously the use

of modelling schemes, employing inheritance or the like,

which are capable of supporting reuse have attracted

attention within requirements engineering [12]. The most

significant application of these schemes has been in the

specification of "families of systems", where rather than

setting down the requirements for a single system, the

system is seen as an member of a family or class of

related systems which share goals, services, domain

models, and so on .This stems from a basic discomfort

about the overall idea of reuse in the context of

requirements (as distinct from design) and broader

research strategy worries about treating with reuse before

we have established practice for use. I feel effort is better

spent in the weak link of reuse - giving developers the

ability to rapidly assimilate and understand the

documents and models produced by others. Given that

my scepticism is unlikely to turn the tide of work on

reuse the research issues are the construction of

significant case bases and generic domain models for

realistic domains.

VI. ANALYSIS

Validation

Assuming that the acquisition and modelling processes

are imperfect some validation of the products of the

requirements engineering process is necessary. That is,

they must be analysed in order to establishing the extent t

o which they accurately embody the requirements.

Where there is a mismatch between the conception of the

stakeholders and the requirements as documented this

must be ironed out. Ideally validation should be as tightly

tied to and interleaved with requirements production as

possible. However organizational factors can intervene to

prevent this. In such cases the validation may be faced

with large amounts of information and no guidance on

how to proceed or what questions to ask. Research on

methods for providing such guidance and on developing

interesting or relevant questions to ask of the products of

requirements engineering would be valuable.

Exploration

It is well known that when confronted with a system

people are able to identify its merits and demerits while

unable to set down their requirements on a blank piece of

paper. One way round this problem is to build a

prototype or devise a system simulation as a vehicle for

exploring the requirements. The difficulties of

exploration are well documented: what should be

included in the prototype or simulation; how much of the

prototype or simulation should be carried through to the

final realization; and, how to guide exploration and

organize feedback. Despite the amount of work in the

area these difficulties remain as unresolved research

issues.

Verification
Verification seeks to establish that the subsequent

products of the development process accurately reflect

the requirements as documented (note the distinction

between this and validation). It is no use taking great

care with the requirements only to be unable to check

that they are carried forward through development, for

example to the formulation of a testing programme, in a

consistent fashion.. Software development orthodoxy

sets down that at each stage in software development you

should be able t o prove that the specification (however

construed) you have developed is secure with respect to

the preceding specification. Clearly, automated support

for formal reasoning and proof requires significant

further research. However, for those who are not

wholehearted subscribers to the formal or

transformational development agendas the issues are less

clear. Verification becomes a matter of consistency

management in which inconsistency is tolerated at

certain points in development while at others consistency

is checked and enforced. Taking this more permissive

view of verification poses research challenges which still

have to be resolved.

Inspection
To complement more formal analysis, systematic

inspection is a proven route to eliminating errors. The

purpose of inspection is to remove errors and

misconceptions as near source as possible hence

reducing costs of rework. The basic approach involves

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 1, January 2013

Copyright to IJARCCE www.ijarcce.com 955

defining exit criteria for each of the major elements of

the requirements engineering process and establishing

team based review with respect to these criteria. Analysis

of the results of such inspections can be used for

requirements engineering process improvement [15].

Inspection is proven to work; it is simple and widely

used throughout industry. It should follow from this that

there is widespread research interest. The use of

computer support for inspection and automated data

gathering are deserving of attention. The development of

groupware support for inspection has been considered

there is however considerable scope for further work in

this area.

VII. MEASUREMENT

A requirements engineering process is not much different

from any other industrial process. It is important that the

process be predictable and that schedule commitments

are met with reasonable consistency. This means

measurement of the products and process of

requirements engineering and statistical control applied

to process improvement. Without a settled or established

requirements engineering process and an agreed set of

products derived from that process it is difficult to define

appropriate metrics. It should not be surprising therefore

that work on metrics has not devoted much attention to

requirements engineering. Progress on requirements

metrics must lag inevitably research in requirements

engineering. While I acknowledge the importance of

measurement, a broad range of general purpose metrics

in this area may not be achievable in the medium-term

future.

It is the responsibility of requirements

engineering to supply preliminary estimates of

development cost, effort and schedule. These estimates

may be derived from the measurements discussed above

and records of development experience. However, this is

an area in which current requirements engineering

practice is inadequate. Much of what has been said above

for metrics applies to estimation which adds to the

challenges of measurement those of predictive models.

VIII. DOCUMENTATION

Information management

The requirements engineering process produces large

amounts of richly interrelated technical information and

documentation. Some of this is textual, some graphic

(drawings and diagrams)[13]. Storage and retrieval and

production of high quality, tailored documentation is of

considerable practical importance. The broad thrust of
research in this area is linked to progress on software

engineering repositories and the associated issues of

distribution and long transactions. In the future we can

expect to add video and sound records of technical

meetings and document annotations.

 Recording rationale and argumentation

 In the discussion above we have placed great emphasis

on the creation and tracking of models, specifications

and associated information - the products of

requirements engineering. However in most system

development processes more than 80% of costs are in

rework and half the efforts in these activities are about

understanding the system in order to make effective

corrections and enhancements. In order to achieve this

understanding you need to know what decisions were

considered, assumptions made and alternative solutions

rejected. This information may be remembered but with

time and staff turnover it soon gets lost. It is essential to

keep a "process-oriented" record of the rationale and

argumentation underpinning the products of

requirements engineering. The use of argumentation

support in systems development as a whole has

proceeded rapidly without any systematic assessment.

Different argumentation schemes have been advanced

without a clear understanding of their advantages and

drawbacks with respect to existing proposals. This needs

to be rectified before the area can advance further.

Traceability

Traceability is the ability to follow the "life" of

requirements in both a forward and backward direction

through the development process. Forward traceability is

needed to demonstrate how a requirement is manifested

in a system and the intermediate products of system

development. Backward traceability is required in order

to maintain the integrity of the requirements in the face

of subsequent design changes or in the environment in

which the system operates. This area has recently seen an

upsurge in research interest. The bulk of the work

concentrates on the ability to link fragments of text, to

visualize navigate these links. In this assessment the

issue of "pre-requirements traceability" is highlighted. In

particular the problems of linking artefacts produced

during requirements engineering t o the groups and

individuals involved in their production. Some

interesting ideas on the use of truth-maintenance and

constraint networks in this context are also emerging and

appear

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 1, January 2013

Copyright to IJARCCE www.ijarcce.com 956

worthy of further research attention.

Standards and Conformance

Most organizations with mature systems engineering

practices require conformance to external standards and

codes of practice which set down how requirements

should be documented and how the process should be

organized. Standards constitute minimal good practice

thus there will always be a gap between what is

suggested by standard bodies and the state-of-the-art. In

an area of rapid change such as requirements engineering

this is doubly true. However I am inclined to the view

that standards in the requirements engineering area have

slipped further from what is known in research and

advanced practice than is acceptable. This is a challenge

to those involved in the standards process, particularly

large system procurers, to re-examine this area.

IX. CONCLUSION

I have highlighted a spread of issues that belong on a

requirements engineering research agenda and have

where possible tried to indicate the priority I believe

should be attached to them. However, by presenting

these issues area by area I have missed what I regard as

the most important problem in requirements engineering

research and practice. We lack an adequate

understanding of the requirements engineering process as

a whole. That is of how the many individual

contributions can be assembled into a coherent tool-

supported method (using that term loosely). Alongside

advance on the issues highlighted above there is an

important need for consolidation at both the conceptual

and pragmatic levels.

ACKNOWLEDGMENT

We gratefully acknowledge the support for this paper

from the Department of Computer Science and

Engineering and also Department of Information Science

and Engineering, R.V College of Engineering,

Bangalore, India. Our sincere thanks to HOD of

Computer Science and Engineering and other professors

for their valuable suggestions and support.

REFERENCES

[1] Benner, K.; Feather, M.; Johnson, W.L. &

Zorman,”Utilizing Scenarios in the Software

Development Process” Proc. IFIP WG 8.1

Working Conference o n Information Systems

Development Process; North-Holland.2012

[2] Blyth, A., Chudge, J., Dobson, J. & Strens, M.

(2012); ORDIT: a new methodology to assist in

the process of eliciting and modelling

organisational requirements; ACM Conference

on Organizational Computing Systems 2012; p

p 216-223, 2012

[3] Boehm, B.; Bose, P.; Horowitz, E. & Lee, M.J.

“Software Requirements as Negotiated Win

Conditions” Proc. 1st International Conference

on Requirements Engineering; pp 74-83, 2011

[4] Boehm, B.W & Papaccio, P.N.” Understanding

and Controlling Software Costs “ IEEE

Transactions on Software Engineering, SE4, 10,

pp 1462-77,2011

[5] Brown, P. “QFD: echoing the voice of the

Customer” AT&T Technical Journal; March-

April; pp18-32,2011

[6] Christel, M.; Wood, D.; Stevens, S. “AMORE:

The Advanced Multimedia Organizer for

Requirements Elicitation; CMU Technical

Report” CMU/EI-93-TR- 12,2011

[7] Conklin, J.” Design Rationale and

Maintainability” Proc 22nd Hawaii International

Conference on System Sciences; II, pp533-539;

2010.

[8] Curtis, B. “Five Paradigms in the Psychology of

Programming “ MCC Technical Report; STP-

132-87, 2010.

[9] Dardenne, A.; Fickas, S. & van Lamsweerde, A.

“Goal-directed Requirements Acqusition”

Science of Computer Proigramming; 20, pp 3-

50,2009;

[10] Davis, A.M. “Software Requirements: analysis

and specification”; Prentice Hall Inc.

[11] Dorfman, M. & Thayer, R.H. “Standards,

Guidelines and Examples on System and

Software Requirements Engineering” IEEE CS

Press Tutorial, 2008;

[12] Fagan, M.E. “Design and Code Inspections to

Reduce Errors in Program Development” IBM

Systems Journal; 15, 3, pp 182-211, 2008;

[13] Feather, M.S. “ Language Support for the

Specification and Development of Composite

Systems” ACM Transactions on Programming

Languages and Systems; 9, 2, pp 198-234,2011

[14] Fickas, S. & Helm, R. “Knowledge

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 1, January 2013

Copyright to IJARCCE www.ijarcce.com 957

Representation and Reasoning in the Design of

Composite Systems; IEEE Transactions on

Software Engineering; pp 470- 482, 2007;

[15] Fickas, S. & Nagarajan, P. “Being

Suspicious:critiquing problem specifications”

Proc AAAI 88; 1, pp19-24; 2010.

[16] Finkelstein, A. & Finkelstein, L. 2009; Review

of Design Methodology; Proc. IEEE,130 ptA,4,

pp213-222,2009

Biography

Swarnalatha K. S is working as

an Assistant Professor in the Dept

of CSE in R V College of

Engineering Bangalore. My area

of interest is Software

Engineering, Modelling and

simulation.

Dr G N Srinivasan is working as

a Professor and Associate Dean

in the Dept of ISE, R V College

of Engineering Bangalore. My

area of interest is Software

Engineering, Data Engineering,

and Image Processing.

